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This paper describes an experimental and numerical investigation of concentrated
vortex flow past a sphere in a constant-diameter pipe. As the swirl was increased at
a fixed sphere Reynolds number of approximately 1100, the length of the mean
downstream separation bubble decreased. For a small range of swirl intensity,
an almost stagnant separation bubble formed on the upstream hemisphere. A
further increase in swirl caused the bubble to become unstable and develop into
an unsteady spiral disturbance. At very high swirl the downstream separation bubble
was eliminated and an unsteady separation zone extended far upstream. Calculations
of the vorticity field from surface fits to azimuthal and axial velocity data suggest that
upstream separation is caused by the distortion of vortex filaments in the diverging
flow approaching the sphere. Numerical solutions of steady inviscid axisymmetric
flow past a sphere exhibit a fold in the vicinity of upstream separation. It is suggested
that this accounts for the extreme sensitivity encountered in the experiments.

1. Introduction
Interest in vortical flow past a sphere was originally motivated by the classical

problem of particle entrainment into turbulent boundary layers. Observations of
coherent structures in turbulent boundary layers led Joubert & Wang (1987) to
speculate about the role of vortices in the entrainment process. In an effort to
understand how vortical structures interact with particles, Joubert & Wang (1987,
1989, 1992) idealized the particle as a sphere and placed it in confined and tornado
vortices. A similar fundamental approach to particle-laden turbulent flows was
advocated by Kim, Elghobashi & Sirignano (1995) who point out that the standard
equation of particle motion is not valid when the eddy and particle are of similar
size because the velocity gradients of the carrier flow are no longer negligible. This
paper does not address the complex problem of particle entrainment but extends the
fundamental work of Joubert & Wang (1987).

We consider the flow of a vortex past a sphere placed on the axis of symmetry of a
constant-diameter pipe. The axis of symmetry of the vortex and the pipe are nominally
coincident, and the vortex has both azimuthal and axial velocity components (the
streamlines are helical). The flow is classified as a streamwise or perpendicular vortex–
body interaction by Rockwell (1998). It is related to the classical problem of rotating
flow past a sphere originally considered by Proudman (1916) and Taylor (1917), the
difference being that the axial vorticity is concentrated in the vortex core. The flow
is also related to vortex breakdown. In many studies, breakdown is induced by the
adverse pressure gradient (or streamline divergence) due to a flared tube or nozzle.
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Figure 1. Upstream separation on a sphere. Flow is from top to bottom. Image from
unpublished flow visualization by Joubert and Wang.

An adverse pressure gradient (or streamline divergence) is also created by a body
placed on the axis of symmetry as the flow approaches the stagnation point. It is
widely recognized that objects can strongly affect vortical flows and even provoke
breakdown. In particular, Brücker & Althaus (1995) mention the existence of a
recirculation region upstream of a hollow hemispherical cap placed in a vortex and
comment on its relationship to vortex breakdown. The aim of this study is to examine
the changes in flow past a sphere as the swirl intensity is increased from zero with
Reynolds number fixed.

Joubert & Wang (1987) investigated the flow of a vortex past a sphere in a pipe
for a small range of relatively high swirl intensity. The vortex was generated by a
circumferential turning vane arrangement upstream of the working section, which
was a constant-diameter pipe. The swirl intensity was characterized by the ‘vane
swirling angle’ and varied from 72◦ to 84◦. The sphere Reynolds number based on
the sphere diameter and the bulk axial velocity varied from 388 to 1163. The sphere
was mounted on a sting located at two positions on the pipe axis, either upstream
or downstream of the sphere. They found that the drag coefficient (based on the
bulk axial velocity) was at least an order of magnitude greater than those measured
in unswirled flow. The drag coefficient was larger when the downstream sting was
used. Flow visualization revealed an unsteady region of separation on the upstream
hemisphere and attached flow on the downstream hemisphere, opposite to the flow
pattern when the flow is unswirled (figure 1). The separated region extended far
upstream and varied in diameter with the sphere size.

Joubert & Wang (1992) subsequently attempted to measure the flow field around
the sphere using laser Doppler velocimetry (LDV). In this study, the apparatus was
altered so that the swirl was produced by tangential jets prior to entering the working
section. Additional unswirled fluid was added through axial jets which were directed
onto the free surface of the settling chamber. The sphere was supported by two
narrow stings, one upstream and one downstream. Measurements of the flow field
failed to provide evidence of upstream separation, which was confirmed by flow
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visualization. They found that the upstream sting increased turbulence in the core
due to the wake shed from the sting as the vortex core continually shifted position.
When the upstream sting was removed, flow visualization again showed the presence
of upstream separation. They mentioned that this change of flow structure with sting
position was consistent with the change in drag coefficient noted in the earlier study.
Panchapakesan et al. (1995) subsequently confirmed upstream axial flow reversal
using LDV and a downstream sting only.

None of these studies examined the transition from upstream attached flow to
upstream separation which must occur as the swirl is increased. The measurements
suffered from poor accuracy while the flow exhibited high turbulence levels, significant
asymmetry and a curious axial flow regime consisting of an annular region of reverse
flow. This flow regime extended through the pipe and was independent of the presence
of the sphere.

In preparation for the present study, Mattner, Joubert & Chong (2002) examined
the behaviour and properties of the vortex produced by a modified version of the
guide-vane-driven apparatus used by Joubert & Wang (1987). These modifications
reduced both the turbulence intensity and asymmetry to less than 2% of the bulk
axial velocity at zero swirl. For β � 23◦ (where β is the angle of attack of the guide
vane measured at its pivot, as defined in Mattner et al. 2002) a steady laminar quasi-
cylindrical vortex was established, with properties typical of guide-vane-driven vortex
flows appearing in the literature (such properties are summarized by Leibovich 1984
and Escudier 1988). Experiments in this regime (the first three flow cases presented
in § 4) are therefore free of unusual complicating behaviour and the flow conditions
are of general interest. For β � 23◦, the flow is supercritical, and the effects of
downstream boundary conditions are expected to be relatively benign (cf. the effects
of downstream boundary conditions in subcritical flow; see Escudier & Keller 1985).
Mattner et al. (2002) also showed that the annular reverse axial flow regime was the
result of a complicated transition process as the swirl intensity was increased following
vortex breakdown, which first occurred at β > 23◦. In the present study, the maximum
guide vane angle has been limited to β = 39◦ as this avoids the complicating effects
of outer-flow unsteadiness and annular axial flow reversal. At this swirl intensity, the
flow is subcritical, and it is possible that downstream boundary conditions can have
a strong effect on the upstream flow.

Joubert & Wang (1987) did not propose an explanation of upstream separation but
compared the separated region to Taylor columns. Brown & Lopez (1990) suggested
that the inviscid mechanism responsible for rapid expansion of stream surfaces in
axisymmetric vortex breakdown might also be important in vortical flow past solid
bodies. This mechanism is also discussed by Althaus, Brücker & Weimer (1995) and
Brücker & Althaus (1995), and the latter also mention its importance to vortical
flow past an obstacle. Consider flow in a cylindrical coordinate system with radial,
azimuthal and axial coordinates (r, θ, z) respectively and corresponding velocity and
vorticity components (u, v, w) and (ξ, η, ζ ). For inviscid incompressible axisymmetric
flow, Brown & Lopez (1990) showed that the azimuthal vorticity depends on the
stream surface radius r = σ according to

η

η0

=
σ0

σ

(
α0

β0

)
− σ

σ0

(
α0

β0

− 1

)
, (1.1)

where α0 = v0/w0 and β0 = η0/ζ0 are the upstream values of the tangents of the
helix angles of velocity and vorticity respectively and the subscript 0 denotes values
at an upstream station. For α0 > β0, divergence of streamlines (σ/σ0 > 1) eventually
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Figure 2. Vortex line distortion in rotating, diverging, inviscid flow. Flow direction is top to
bottom and the fluid is rotating clockwise when viewed in the positive z-direction. The dashed
line is the projection of the vortex line onto the (x, y)-plane.

leads to negative values of η/η0 for η0 > 0. The Biot-Savart law indicates this will
reduce the axial velocity near the axis which, through continuity, causes even further
divergence of the stream surfaces. Thus for α0 > β0 any initial divergence, such as that
caused by a body on the axis or a flared tube, will be amplified, eventually leading
to axial flow stagnation. A similar criterion was derived by Rusak (1996). Brown &
Lopez (1990) suggested that this positive feedback mechanism may account for axial
flow stagnation upstream of a body (upstream separation) as observed by Joubert &
Wang (1987).

The change in η is due to distortion of the vortex lines. Figure 2 shows a sketch
of a vortex filament in a diverging flow when α0 > β0. The upstream axial velocity
w0 and vorticity ζ0 are positive, hence the flow circulates in a clockwise direction
when looking in the positive z-direction, as can be deduced using the right-hand rule.
Consider two particles on a vortex line which is initially almost straight (i.e. β0 is
small). As the flow diverges, moment of momentum is conserved and the azimuthal
velocity decreases. The downstream particle will therefore lag behind the trailing
particle in the azimuthal direction. The vortex line between the two particles is thus
tilted and stretched to form the helical structure shown. The right-hand rule confirms
that this deformation results in an axial velocity reduction close to the axis.

The extent to which the above theory can explain the experimental results of Joubert
& Wang (1987) is unclear. The upstream flow in the experiment was unsteady, with
three-dimensional disturbances and complex right- and left-handed helical vortex
lines. In addition, an unpublished video of the flow by Joubert and Wang indicates
that there was no upstream station within the test section not affected by the presence
of the sphere. In § 4, we clarify the application of the theory to upstream separation
on the sphere by measuring the velocity field and estimating the vorticity using the
methods and analysis described in § 2 and § 3. In § 5, we perform a parametric study of
swirling flow past a sphere through a numerical analysis of the Squire–Long equation.
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Figure 3. General layout of the sphere mechanism showing the sting passing through the
centre of the orifice. Flow is from top to bottom. All dimensions in mm.

2. Experimental apparatus and techniques
Apart from the size of the orifice outlet, the apparatus was identical to the one

used by Mattner et al. (2002) and the reader is referred to that paper for full details.
The sphere and its support mechanism are shown in figure 3. The sphere radius rs

was 22.6 mm. The ratio of the sphere radius to the pipe radius R was rs/R = 0.263,
resulting in an area blockage of 7%. The sphere was supported by an 8 mm diameter
sting which passed out through the orifice and was clamped in an external assembly
below the water tunnel. The support assembly allowed the sphere to be located
in three dimensions while constraining the downstream end of the sting to remain
close to the pipe axis. The orifice diameter was increased from 14.25 mm to 15.8 mm
to maintain a similar pipe Reynolds number to Mattner et al. (2002), despite the
blockage caused by the sting.

Once the sphere was installed, physical access to the working section was impossible.
The centre of the pipe was established by firing two laser beams along orthogonal
diameters of the pipe. The beams were established on these lines by observing when
the incident beam and its reflection from the pipe wall remained in a vertical plane.
The sphere position was adjusted until the upstream pole was in the centre of both
beams. The uncertainty in locating the sphere at the centre of the pipe using this
procedure was approximately ±2 mm. A horizontal laser beam was used to set the
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centre of the sphere 467±0.5mm above the orifice, close to the middle of the available
measurement region.

Laser Doppler velocimetry (LDV) was used to measure the mean azimuthal and
axial velocities. Details of the LDV system, the procedures used, and a discussion of
the major sources of error may be found in Mattner (2000). Wall approach limitations
generally prevented measurements less than 5 mm from the sphere or sting surface,
even though these were painted black to maximize visible light absorption. Axial
velocity measurements much closer to the sphere were obtained by moving the probe
volume off the pipe centreline, so that the optical axis was tangential to the surface.
The probe volume was then traversed along the optical axis and the radial position
computed from simple geometry (for details, see Mattner 2000). This method also
improved the resolution of measurements through the sphere boundary layer, since the
traverse was oblique with respect to the direction of the maximum velocity gradient
(normal to the wall). Note that the mean flow must be axisymmetric for this technique
to work and that this method could not be applied to azimuthal velocities.

Radial traverses were completed at different axial stations. The resolution was
increased in regions of high velocity gradient, ranging from 1–5 mm in the radial
direction and 2.5–50 mm in the axial direction. As a result, the data do not form
a regular grid and in raw form are not amenable to further analysis. Completely
regularized splines (Mitásŏvá & Mitás̆ 1993; Mitásŏvá et al. 1995) were used to
generate analytic surface fits to the data. The surface S(x) is represented by the
equation

S(x) = λ0 +

M∑
j=1

λjRd

(
x, x(j )

)
, (2.1)

where x = {x1, x2, . . . , xd} is an arbitrary point in d-dimensional space, x(j ) is the j th
discrete data point, Rd(x, x(j )) is a radial basis function which is dependent on the
dimension d and M is the total number of data points. The coefficients {λ0, λj } are
determined by solving the (M + 1) × (M + 1) linear system

λ0 +

M∑
j=1

λj

[
Rd

(
x(i), x(j )

)
+ δij

ω0

ωj

]
= y(i), i = 1, . . . , M, (2.2a)

M∑
j=1

λj = 0, (2.2b)

where y(i) is the measured quantity at the ith discrete data point and δij = 1 when
i = j and 0 otherwise. The radial basis functions for explicit values of d are given by
Mitásŏvá et al. (1995) as functions of

ρ̂
(
x, x(j )

)
=

φ2

4

d∑
i=1

(
xi − x

(j )
i

)2
.

This type of spline was chosen as the surface behaviour can be controlled by the
smoothing factor ω0 and the tension parameter φ, without requiring data on a regular
grid. In the absence of a reliable estimate of individual errors, the weighting factors
ωj were set to unity. Manipulation of φ and ω0 was not sufficient to ensure an
adequate fit in the present examples (for a discussion, see Mattner 2000). The physical
coordinates were therefore mapped onto the four-dimensional surface defined by

x1 = F (r), (2.3a)



Vortical flow. Part 2 7

x2 = α1z, (2.3b)

x3 = G
(
(r2 + z2)1/2 − rs

)
, (2.3c)

x4 =
2

π
tan−1

(z

r

)
, (2.3d)

where F (x) and G(x) are stretching functions defined by

F (x) = B +
1

α2

sinh−1

[(
x

x0

− 1

)
sinh(α2B)

]
, (2.4a)

where

B =
1

2α2

ln

[
1 + (eα2 − 1)(x0/xmax)

1 + (e−α2 − 1)(x0/xmax)

]
, (2.4b)

and

G(x) = 1 − ln{(α3 + 1 − x/xmax)/(α3 − 1 + x/xmax)}
ln{(α3 + 1)/(α3 − 1)} . (2.5)

F (x) stretches the coordinate around the point x = x0, and was used to provide
coordinate stretching about the downstream shear layer for β � 19◦ and about the
sting for β = 39◦. G(x) stretches the coordinate around the point x = 0 and was
used to provide coordinate stretching in the sphere boundary layer. Additional points
were added on the sphere and sting surfaces and the corresponding velocity set to
zero (no-slip condition), but the surface was not otherwise forced to satisfy any
boundary conditions. All dimensions were non-dimensionalized by the pipe radius
and all velocities by the bulk axial velocity prior to fitting. A total of five parameters
controlled the surface fit: ω0, φ, α1, α2 and α3. The resulting surface was not sensitive
to the exact values of these parameters and suitable values were not difficult to find.
The appropriate form of the radial basis function for d = 4 was

R4

(
x, x(j )

)
=

1 − exp(−ρ̂)

ρ̂
− 1. (2.6)

The spatial derivatives were recovered using the chain rule:

∂S

∂r
=

∂S
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+
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, (2.7a)
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+
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∂z
+

∂S

∂x4

∂x4

∂z
. (2.7b)

The component derivatives of equation (2.7) were determined by straightforward
analytical differentiation of equations (2.1), (2.3), (2.4) and (2.5).

3. Definitions and flow parameters
3.1. Coordinate system

Data are presented in terms of the cylindrical coordinate system and associated
velocity and vorticity components defined in § 1. The z-axis is coincident with the
pipe axis and positive in the bulk flow direction. The origin is located at the centre
of the sphere. Capital letters denote the time average.
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β (deg.) Q (m3 s−1) Wb (m s−1) Γ0 (m2 s−1) Ω Re

0 0.485 × 10−3 0.0208 0.0 0.0 4291
16 0.485 × 10−3 0.0208 0.00234 0.65 4291
19 0.485 × 10−3 0.0208 0.00283 0.79 4291
39 0.484 × 10−3 0.0208 0.00735 2.05 4192

Table 1. Sphere flow parameters.

3.2. Flow parameters

The flow parameters are listed in table 1. The bulk axial velocity Wb is defined in
terms of the volume flow rate Q by

Wb =
Q

πR2
(3.1)

and the pipe Reynolds number Re by

Re =
2WbR

ν
, (3.2)

where R is the pipe radius and ν the kinematic viscosity. Note that the sphere
Reynolds number Res , defined by replacing R with rs in equation (3.2), is related to
the pipe Reynolds number by Res = (rs/R)Re or 0.263Re and was therefore fixed
at approximately 1100. This does not correspond precisely to a free-stream sphere
Reynolds number due to solid blockage effects and the pipe wall boundary layers
which make Wb less than the effective free-stream axial velocity. The swirl parameter
Ω is defined by

Ω =
Γ0

2RWb

, (3.3)

where Γ0 is the circulation at the trailing edge of the guide vanes and is calculated
from the guide vane angle β using

Γ0 =
Q

H

sin β

cos β − cgv/Rgv

, (3.4)

where H , cgv , Rgv are apparatus-dependent parameters equal to 85 mm, 73 mm and
252 mm respectively. These definitions are consistent with those used by Mattner
et al. (2002) where the properties of the vacant vortex were established. Note that the
pipe Reynolds number in the present experiments is approximately 12% lower. This
was due to an 8% decrease in volume flow rate as well as a decrease in equilibrium
temperature and consequent increase in viscosity due to cooler ambient temperatures.
One consequence of this difference is a change in the value of Ω at which vortex
breakdown first appears in the vacant pipe. Figure 15 from Escudier (1988) shows that
Γ and Re at vortex breakdown are roughly correlated by Ω3SRe = constant where
S = Q/Γ0L, and L is the length of the apparatus. This relationship was originally
proposed for a slit-jet-driven vortex flow; however the same figure suggests that
data from guide-vane-driven apparatus follow the same trends, at least in a limited
Reynolds number range 103 < Re < 2 × 104. For an apparatus with fixed dimensions
the correlation reduces to Ω2Re = constant; hence the breakdown swirl intensity Ω1



Vortical flow. Part 2 9

at Reynolds number Re1 is related to that at Re2 by

Ω2

Ω1

=

(
Re1

Re2

)1/2

. (3.5)

At Re1 = 4900 vortex breakdown appeared when Γ > 0.98 (β > 23◦, Mattner et al.
2002), so for Re2 = 4300 it is expected at Ω2 > 1.05 (β > 24◦). Based on this
correlation, vortex breakdown would not be expected in the vacant flow for the first
three cases listed in table 1.

3.3. Analysis

In analysing the data, it is assumed that the flow is steady, axisymmetric, and
incompressible. Where the flow is unsteady, the data are time averages. In the vacant
flow, Mattner et al. (2002) found that deviations from axisymmetry were less than
2% of the bulk axial velocity up to approximately β = 45◦. An additional source of
asymmetry arises in the sphere experiments due to any eccentricity of the sphere with
the vortex or pipe axes. The circulation Γ around the circular path C of radius r was
calculated from the surface fits using

Γ (r) =

∮
C

U · ds =

∫ 2π

0

rV dθ = 2πrV . (3.6)

The stream function ψ defined by

U = −1

r

∂ψ

∂z
and W =

1

r

∂ψ

∂r
(3.7)

was calculated from

ψ(r) =

∫ r

0

r̂W (r̂) dr̂ (3.8)

with ψ(0) = 0 and ψ0 = ψ(R) = Q/2π. The radial velocity U was computed by
integrating the continuity equation

U = −1

r

∫ r

r0

r̂
∂W

∂z
dr̂ , (3.9)

where U = 0 at r = r0. The derivative was calculated from the surface fit to W using
equation (2.7). The integrals were computed using an adaptive trapezoidal scheme set
to give a maximum relative error of 10−3. The three components of vorticity

ξ = −∂V

∂z
, η =

∂U

∂z
− ∂W

∂r
, ζ =

1

r

∂(rV )

∂r
(3.10)

were calculated by estimating the velocity gradients from surface fits to U , V and W

using equation (2.7). At r = 0 the axial vorticity was calculated from its limit

lim
r→0

ζ = 2
∂V

∂r
. (3.11)

4. Results
4.1. Flow visualization

The flow was visualized by introducing dye from the apex of the contraction,
well upstream of the sphere. At β = 0◦ (figure 4a), the flow was steady, laminar,
and attached on the upstream hemisphere. Separation occurred downstream of the
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(a)

(b)

(c)

Figure 4. Vortical flow past a sphere. Flow is from left to right. (a) β = 0◦, (b) β = 19◦,
(c) β = 20◦.

point of maximum thickness, forming a bubble of very slow, reverse axial flow on
the downstream hemisphere. The boundary of the bubble was sharply defined and
relatively steady up to one diameter downstream of the sphere. Unsteadiness developed
further downstream and the rear of the bubble, which was not perfectly closed, was
characterized by considerable fluctuations. The flow pattern remained qualitatively
similar up to β ≈ 17◦. Note that the air bubbles visible in the photographs did not
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affect flow field measurements as they disappeared completely during the time allowed
for the apparatus to reach thermal equilibrium.

At β = 19◦, a separation bubble appeared on the upstream hemisphere. It was also a
region of near-stagnant flow; however the dye in figure 4(b) reveals some complicated
non-axisymmetric fluid motion in its interior. The bubble was not perfectly steady as
occasional puffs of fluid entered near the reattachment point on the sphere. It should
be noted that upstream separation occurred at a swirl intensity much less than that
required for vortex breakdown in the vacant pipe. There does not appear to have
been a great change in the position of the downstream separation point; however the
length of the downstream separation bubble (which is better defined in terms of the
mean streamlines) appears to have been reduced.

This flow regime appears to have been rather special. Increasing β by as little as
1◦ caused the bubble to grow in length, become increasingly unsteady and finally
develop into the unsteady spiral structure shown in figure 4(c). The dye pattern was
similar in appearance and behaviour to the spiral disturbance described in Mattner
et al. (2002). Fluctuations in spiral position and form occurred at a rate which was
considerably slower than the rate of rotation. This behaviour made it impracticable
to obtain reasonably well-converged data in this regime. The spiral moved upstream
with further increase in β , eventually moving into the contraction, leaving an unsteady
disordered vortex core in its wake.

4.2. Mean velocity field

The flow at zero swirl was measured to establish a datum with which the flows at
higher swirl might be compared and to confirm that the flow was free from any
unusual behaviour that might have been caused by the boundary conditions or flow
quality. The mean velocity distributions are shown in figure 5. The axial flow one
diameter upstream of the sphere was uniform except for a 6% deficit near the centre.
This is due to the wake shed from the centrepiece in the contraction and was also
evident in the absence of the sphere. The azimuthal velocity exhibits a systematic
variation close to the upstream pole. The peak azimuthal velocity in this region
is as large as 7% of Wb, which is significantly larger than the local axial velocity.
Using a potential flow model of the velocity field upstream of the sphere, it can
be shown this is consistent with a displacement of the measurement plane from the
stagnation point by about 0.9–1.4 mm. This is well within the estimated uncertainty in
sphere position. Using the same model, the corresponding error in the axial velocity
component is approximately 0.6–1.3% of Wb. Close to the sphere, the axial velocity
data from the offset traverse (§ 2) smoothly overlaps radial traverse data, suggesting
that the flow was almost axisymmetric in that region. Near the rear of the separation
bubble (z/rs � 3.32), the overlap was not as smooth, with discontinuities as large as
10–15% of Wb. The offset in this region was not large (being equal to the sting radius)
and it is therefore unlikely such a large error was caused by asymmetric mean flow.
A more likely explanation is the fluctuation in length (over the five days required for
data acquisition) of the separation bubble itself.

The radial gradients associated with the shear layer remain virtually undiminished
for approximately one sphere diameter (0 � z/rs � 2.43), after which they become
smeared. This is consistent with the observation of unsteadiness near the rear of
the separation bubble. The time scale of the fluctuations was relatively slow (quasi-
periodic with period 1/f ≈ 8–10 s) compared with the limited sample time (120 s)
and this contributes to the scatter of the data in this region. Incidentally, this gives
a Strouhal number St = 2f rs/Wb ≈ 0.22–0.27 or, if 1.2Wb is used to estimate the
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lines are splines. Legends refer to z/rs: top figures, z < −rs; middle, −rs < z < rs; bottom,
z > rs .
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effective free-stream axial velocity scale, 0.18–0.23. This is in a similar range to values
quoted from both experiments and numerical calculations at Reynolds numbers of
approximately 1000 (e.g. see Tomboulides & Orszag, 2000).

The flow at β = 16◦ was measured to establish the effects of swirl in the absence of
upstream separation. The mean velocity distributions are presented in figure 6. The
upstream velocity profiles are similar to those measured by Mattner et al. (2002) prior
to vortex breakdown. The vortex centreline, defined as the point of zero azimuthal
velocity, deviated from the pipe centreline by up to 5% of rs or 1.3% of R ahead of
the sphere. Note that the azimuthal velocity remained non-zero at z/rs = −1.11. It
is possible that this is due to the displacement of the measurement plane from the
stagnation point, as discussed above. For r > 2rs , the azimuthal velocity was almost
unaffected by the presence of the sphere.

Figure 7 shows the mean velocity distributions at β = 19◦. This was the largest
value of β to produce an upstream separation bubble sufficiently stable to complete
measurements. The separation bubble was a region of slow reverse axial flow and
slow azimuthal flow. Note that the disturbance due to the sphere decreases sufficiently
far upstream of the sphere and that the axial flow close to the axis of symmetry
and downstream of the sphere is reversed (i.e. separated), unlike the flow studied by
Joubert & Wang (1987). Furthermore, flow visualization indicates that the bubble
is laminar, quasi-steady, and well-defined, again in contrast to the flow observed by
Joubert & Wang (1987).

To see if a flow more like that observed by Joubert & Wang (1987) could be
obtained, the flow was measured at β = 39◦. At this swirl intensity, vortex breakdown
would have occurred and moved up into the contraction even in the absence of the
sphere. As a result, the vortex core approaching the sphere was unsteady and this
made flow visualization less effective. The mean velocity distributions are presented
in figure 8. The mean axial velocity was negative and small in magnitude near the
axis as far upstream as measurements could be taken. In the undisturbed flow, the
axial velocity profiles were positive, jet-like, and roughly equal to Wb in magnitude
(Mattner et al. 2002). This indicates that the sphere had a strong and extensive
upstream effect on the vortex. In all previous cases the upstream disturbance caused
by the sphere died out relatively rapidly. Mattner et al. (2002) showed that the flow
was supercritical for β � 23◦ and subcritical at β = 39◦. When the flow is subcritical,
it can support upstream-directed infinitesimal axisymmetric waves and downstream
disturbances can have large upstream effects (Escudier & Keller 1985). The change in
the upstream effect of the sphere is therefore consistent with a change of flow state.

The axial flow was positive downstream of the sphere and accelerated around the
downstream hemisphere. The maximum mean azimuthal and axial velocities occurred
in a localized region close to the downstream pole of the sphere and the sting. Less
than half a diameter downstream of the sphere, both peaks were abruptly destroyed
and the subsequent flow developed relatively slowly, if at all, with streamwise distance.
It is not known if this abrupt change in velocity is due to sting interference, or is
related to the ‘vortex jump’ observed by Maxworthy (1970) on the downstream
hemisphere of a translating sphere in rotating flow.

When β was close to that required to produce an upstream separation bubble, the
flow obtained was extremely sensitive and not always unique. It was not possible
to stop the apparatus, restart it and continue measurements at a later time, and
still maintain precise continuity in the data. All data were therefore collected during
a single uninterrupted operation. Part of the problem may have been related to
experimental difficulties of the type discussed by Mattner (2000). On the other hand,
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Figure 6. As figure 5 but for β = 16◦, Ω = 0.65.

the inherent flow characteristics may also have been a factor. For example, on
one occasion when β = 19◦, data were collected showing an unsteady disturbance
penetrating up to three diameters ahead of the sphere. This was associated with
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Figure 7. As figure 5 but for β = 19◦, Ω = 0.79.

the presence of an unsteady spiral structure similar to that shown in figure 4(c).
This lasted for three days before the flow settled into the steady upstream bubble
regime depicted in figures 4(b) and 7. At no point was the flow stopped or the flow
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parameters deliberately changed. On another occasion, a steady upstream bubble
regime was observed at β = 16◦. This eventually settled into an unseparated upstream
flow state over a period of one day. These observations show that dramatic flow
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α1 α2 α3 φ ω0 RMS

β = 0◦ U 0.276 4.0 1.01 20.0 0.0001 8.7 × 10−4

V – – – – – –
W 0.276 4.0 1.01 15.0 0.001 1.8 × 10−2

β = 16◦ U 0.312 4.0 1.01 20.0 0.0001 4.9 × 10−4

V 0.312 4.0 1.01 12.5 0.001 3.6 × 10−3

W 0.312 4.0 1.01 12.5 0.001 1.5 × 10−2

β = 19◦ U 0.341 2.0 1.02 20.0 0.0001 3.6 × 10−4

V 0.341 2.0 1.02 15.0 0.001 4.4 × 10−3

W 0.341 2.0 1.02 15.0 0.001 1.2 × 10−2

β = 39◦ U – – – – – –
V 0.162 3.0 1.01 10.0 0.005 1.8 × 10−2

W 0.162 5.0 1.0001 10.0 0.005 3.4 × 10−2

Table 2. Surface fit parameters.

variations can occur even though changes in flow conditions may be very small. This
behaviour is discussed in § 5.

4.3. Surface fits

Table 2 lists the parameters used for surface fitting. Also shown is an estimate of the
root-mean-squared error

RMS =
1

M

M∑
j=1

[
y(j ) − S

(
x(j )

)]2
. (4.1)

This is not a completely satisfactory measure of surface quality, since RMS could be
made as small as desired by increasing φ and setting ω0 = 0. The resulting surface
would then include substantial spatial variation between data points. For this reason,
figures 5, 6, 7 and 8 show the surface fits at each axial station as solid lines. These
figures show that the current technique is able to accurately fit the data where the
scatter is small and produces an appropriate ‘line of best fit’ where the scatter is larger.
An example of the spatial distribution of the surface fits is shown in figure 9 for
β = 16◦. These can be compared with the original data in figure 10. There is a some
waviness evident in the azimuthal velocity fit downstream of the sphere; otherwise
the surface fits of the azimuthal and axial velocity components compare well with
the original data. The main difficulty is evident adjacent to the upstream pole, where
there is a certain degree of discontinuity in the radial velocity. The discontinuity is
also evident in the original estimates obtained from the axial velocity surface fit using
equation (3.9). It originates from the discontinuity in the boundary condition at the
pole (U = 0 at r = 0 for z < −rs , U = 0 on r2 = r2

s − z2 for −rs � z � rs). Either the
original data and surface fit are not compatible with this boundary condition (due to
the misalignment of the measurement plane with the stagnation point) or the spatial
resolution of the data in the axial direction (which affects the estimate of ∂W/∂z and
hence U ) is inadequate or there is a combination of both. Note, however, that the
same problem was not experienced at β = 19◦ because the flow was almost stagnant
in the region surrounding the upstream pole.
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Figure 9. Surface fits to (a) U/Wb, (b) V/Wb and (c) W/Wb for β = 16◦. Dashed lines
indicate negative velocity. Isoline intervals are: (a) 0.042, (b) 0.038 and (c) 0.075.

4.4. Circulation and stream function

Figures 11–13 show the circulation and stream function distributions for the first three
flow cases. At β = 0◦, the stream surfaces indicate that the flow separates 102◦ from
the upstream pole, forming a mean recirculation bubble approximately 2.1 diameters
long. Despite significant blockage effects, a slightly higher Reynolds number and the
presence of the sting, these are similar to values obtained by Tomboulides & Orszag
(2000) at a Reynolds number of 1000. The rear separation bubble is reduced to 1.6
and 1.1 diameters at β = 16◦ and 19◦ respectively. Evidently, one effect of swirl is to
shorten the rear separation bubble.

In steady incompressible inviscid axisymmetric flow, the circulation is conserved on
stream surfaces, i.e. Γ = Γ (ψ). Figure 14 shows Γ plotted versus (ψ/ψ0)

1/2, ψ � 0
for (upstream) stations in the range −3.98 � z/rs � −1.11. Note that the function
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Figure 11. Isolines of ψ for β = 0◦.

(ψ/ψ0)
1/2 is equal to r/R for uniform axial flow and exposes details near r = 0

more clearly than simply plotting versus ψ/ψ0. The collapse of the data suggests
that viscous effects may be neglected in the flow approaching the sphere. This is a
local approximation. When viewed at larger scales, the flow develops with streamwise
distance as a quasi-cylindrical viscous vortex (Mattner et al. 2002). Viscosity influences
the flow behaviour by fixing the local flow properties (e.g. peak azimuthal and axial
velocities).

An unexpected feature of the circulation distributions at β = 16◦ and 19◦ is the
overshoot of Γ0 by as much as 18% and 11% respectively. Mattner et al. (2002) found
that Γ exceeded Γ0 by only 5% for β � 39◦ and were able to explain that figure in
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terms of the experimental uncertainty or inadequacies in the assumptions leading to
equation (3.4). The reason for this inconsistent behaviour is not known; however it is
worthwhile pointing out that overshoots are not uncommon. The experimental data
of Faler & Leibovich (1978) indicate an overshoot of 38%, while there is an overshoot
of 26% in the numerical simulation by Snyder & Spall (2000). Such behaviour makes
Ω , as defined by equations (3.3) and (3.4), somewhat unreliable as a flow parameter.
If Γ0 is to be the maximum circulation then the values of Ω in table 1 should be
increased to 0.77 and 0.88 for β = 16◦ and 19◦ respectively.

For β = 39◦, figure 15(a) shows an almost stagnant recirculation region extending
far upstream of the sphere. It appears that the mean flow shares some of the two-
dimensional quality normally associated with Taylor columns in rotating flow. This
behaviour has serious implications for numerical or analytical solution of the flow
at high swirl, making it difficult to specify the upstream boundary conditions. The
flow remains attached on the downstream hemisphere, converging at the downstream
pole. Despite the unsteadiness in the core, comparison of figure 15(b) with 15(a)
suggests Γ was approximately conserved on stream surfaces, resulting in the large
azimuthal velocities near the downstream pole. These features are consistent with the
observations of Joubert & Wang (1987). This flow pattern would be consistent with the
high-pressure drag coefficients they measured due to the almost stagnant conditions
prevailing on the upstream hemisphere (high pressure) and high velocities (low
pressure) near the downstream pole. It was not possible to systematically investigate
the drag in the current experiments due to the very small hydrodynamic head.

4.5. Mean vorticity field

Figure 16 shows the mean azimuthal vorticity for β = 0◦. The other two components
are nominally zero and are therefore omitted. Note that all vorticity components
have been normalized with respect to rs and Wb. The plot correctly indicates high
negative values of azimuthal vorticity in the attached boundary layer on the upstream
hemisphere. The magnitude is reduced in the separated shear layer, initially by
viscous diffusion and further downstream by the velocity gradient broadening effects
of unsteadiness. There is some positive azimuthal vorticity generated at the sting due
to the recirculation in the wake. The qualitative picture is not unlike the instantaneous
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figure 21 from Tomboulides & Orszag (2000); however it is not possible to compare
magnitudes as there is no scale given in their diagram. The accuracy of the current
estimate of η must be seriously questioned. In addition to assuming axisymmetric flow,
the calculations involve taking a derivative of a surface which is itself computed from
a derivative determined from experimental (and therefore noisy) data. An estimate
of the error involved may be obtained from fluctuations of rsη/Wb in the outer flow.
Here the flow should be irrotational, hence the fluctuation of approximately ±0.5
corresponds to the absolute precision error. Other errors may be significant in regions
of high velocity gradient where the vorticity is large. Not only are the measurements
subject to errors due to finite probe volume size in these regions, but even small
absolute errors in probe volume position will lead to large relative errors in the
velocity and hence its gradient. This does not matter greatly as the focus here is on
the vorticity upstream of the sphere.

Figures 17 and 18 show all three vorticity components for β = 16◦ and 19◦

respectively. Note that in both cases the incident flow is dominated by the axial
vorticity component and that this vorticity is concentrated near the axis. There is also
a small positive azimuthal component associated with the axial velocity jet. Using the
estimated azimuthal and axial vorticity components and the measured azimuthal and
axial velocity components, it is possible to estimate α0 and β0 from equation (1.1)
and thus verify that α0 > β0 through the vortex core at z/rs = −3.98 in both cases
(figure 19). Since the stream function and circulation distributions are consistent with
steady axisymmetric inviscid flow (§ 4.4) and α0 > β0, the positive feedback effect
described by Brown & Lopez (1990) (§ 1) is expected. Figures 17(b) and 18(b) both
show a region of negative azimuthal vorticity upstream of the sphere, as predicted
by the theory. In the first case (β = 16◦), the results are not convincing due to the
positive vorticity adjacent to the upstream pole, which is of similar magnitude to
the negative vorticity. This is associated with the discontinuity in the radial velocity
distribution at β = 16◦ (as discussed in § 4.3). In the second case (β = 19◦), this
problem is absent and the minimum non-dimensionalized azimuthal vorticity ahead
of the sphere is approximately −3.5. This is significantly larger in magnitude than the
estimated uncertainty of ±0.5. It should be pointed out that, in the inviscid theory, the
largest decrease in azimuthal vorticity is not expected ahead of the sphere but close to
the equator where σ/σ0 is a maximum. The generation of negative azimuthal vorticity
in the viscous boundary layer on the sphere surface prevents us from observing this.
Nevertheless, it appears that the region of negative azimuthal vorticity close to the
wall is thicker for β = 19◦ than it is for 0◦.
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Figure 17. (a) rsξ/Wb , (b) rsη/Wb and (c) rsζ/Wb for β = 16◦.

The remaining two vorticity components also exhibit significant changes ahead of
the sphere. The axial vorticity component drops to near zero at the axis. For β = 16◦,
this occurs at the upstream pole while for β = 19◦, it occurs at the upstream end
of the separation bubble. The axial vorticity maximum is then located at an off-axis
point. At the same time, a small positive component of radial vorticity appears.
All these variations occur upstream of the sphere. As viscous diffusion is negligible
immediately ahead of the sphere and there is no new vorticity being generated in this
region, these variations also point to distortion of the vorticity field by the divergent
flow approaching the sphere.

The three components of vorticity were integrated to generate vortex lines. Figure 20
shows a perspective view of a single vortex line generated from an initial position
r/rs = 0.076, z/rs = −3.81 for β = 19◦. Note that the arrows indicate the direction
of the local vorticity vector, while the direction of the induced velocity is determined
by the right-hand rule. The calculation was terminated at z/rs = −1 due to the
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Figure 18. (a) rsξ/Wb , (b) rsη/Wb and (c) rsζ/Wb for β = 19◦.

uncertainty in the radial and axial components of vorticity adjacent to the sphere.
Far upstream, the vortex line is almost straight (a helix with a very long pitch) due
to the dominance of the axial vorticity. Close to the separation bubble, the vortex
line rapidly acquires a helical shape which is consistent with the inviscid deformation
process described in § 1. Uniqueness conditions on the axis require that the azimuthal
and radial components of an axisymmetric flow be zero on the axis. As the axial
vorticity also drops to zero at the upstream end of the separation bubble, it follows
that there is a critical point in the vorticity field. The form of the vortex lines indicates
that it has an unstable focus topology.

Although α0 > β0 is a necessary condition for axial flow stagnation ahead of the
sphere (Brown & Lopez 1990), it is not sufficient (Rusak, Whiting & Wang 1998b).
This is consistent with figure 19, which shows that α0 > β0 for both β = 16◦ and
19◦, even though upstream separation only occurred in the latter case. Axial flow
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Figure 20. A single vortex line upstream of the sphere for β = 19◦.

stagnation is dependent on details of the incident vorticity field and the sphere size.
These parameters are systematically investigated in the next section.

5. Steady inviscid axisymmetric flow
5.1. Introduction

For steady inviscid incompressible axisymmetric flow the azimuthal vorticity can be
expressed in terms of the stream function ψ by

−rη =
∂2ψ

∂z2
+

∂2ψ

∂r2
− 1

r

∂ψ

∂r
(5.1)

and the momentum equations reduce to (see Batchelor 1967)

∂2ψ

∂z2
+

∂2ψ

∂r2
− 1

r

∂ψ

∂r
= r2 dH

dψ
− C

dC

dψ
, (5.2)
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where H is the Bernoulli constant defined by

H (ψ) = 1
2
(u2 + v2 + w2) +

p

ρ
(5.3)

and C(ψ) = rv is proportional to the circulation. Both H and C are constant on
stream surfaces. Equation (5.2) has been used in numerous investigations of vortex
breakdown and rotating flow past obstacles where it is often referred to as the
Bragg–Hawthorne or Squire–Long equation. It is the simplest model incorporating
vortex dynamics of the type described in § 1. It is interesting to note that solutions of
equation (5.2) for rotating flow past obstacles sometimes exhibit upstream separation
(Miles 1971). The aim of this section is to examine the nature of the solutions when
the flow is a concentrated vortex similar to those in the experiments. The techniques
used closely follow those employed by Buntine & Saffman (1995).

The functions C(ψ) and H (ψ) are normally specified from assumed velocity profiles
v(r, z1) and w(r, z1) at some undisturbed upstream station z = z1. A popular choice
is the Q-vortex (Leibovich 1984) given by

v =
ω

r

[
1 − exp

(
−r2

r2
0

)]
, w = W0 + W1 exp

(
−r2

r2
0

)
, (5.4)

where ω, r0, W0 and W1 are adjustable parameters. This analytically simple model
captures the broad features of the undisturbed flow (but not some details, see Mattner
et al. 2002) and was therefore used in the present study. Integrating the second element
of equation (3.7) with respect to r gives ψ(r, z1) which can be inverted (in this case
numerically) to determine r(ψ, z1) and hence C(ψ) = r(ψ, z1) v(r(ψ, z1)). The function
H (ψ) may be determined similarly; however the radial momentum equation must
first be integrated with respect to r and then substituted into (5.3) to give

H (ψ) = 1
2
(v2 + w2) +

∫ r

0

(
v2

r̂
− w

∂u

∂z

)
dr̂ . (5.5)

In calculating H (ψ) it is assumed that ∂u/∂z = 0, which is consistent with undisturbed
upstream flow. Equation (5.2) was solved in a domain of length L with the sphere
located in the middle. The boundary conditions were

ψ(0, z) = 0, z2 > r2
s , ψ

((
r2
s − z2

)1/2
, z

)
= 0, z2 � r2

s , (5.6a)

ψ(R, z) =
Q

2π
= ψ−L/2(R), (5.6b)

ψ(r, −L/2) = ψ−L/2(r), (5.6c)

∂ψ

∂z
(r, L/2) = 0, (5.6d)

where ψ−L/2 denotes the stream function determined from the inlet axial velocity
profile. The outlet boundary condition (5.6d) was used by Wang & Rusak (1997b)
and Rusak, Wang & Whiting (1998a) in their theory and numerical simulations of
inviscid vortex breakdown in a pipe. It is not completely consistent with the physical
flow, where the orifice outlet acts like a sink on the axis, but the experiments suggest
that (in the mean) ∂ψ/∂z becomes small at some point between the sphere and the
orifice. In any case, the inviscid model cannot accurately reproduce the physical flow
downstream of the sphere, as boundary layer separation and wake formation are
impossible without the inclusion of viscosity.
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(a)

(b)

Figure 21. Example grids for L = 4 and rs = 0.5: (a) A-grid, 10 × 41, and (b) B-grid, 14 × 33.
Note that the grids shown are much coarser than the grids used in the calculations, and are
for illustrative purposes.

Coordinate transformation techniques were used to map the sphere and pipe
geometry and the governing equation (5.2) onto a rectangular domain. An elliptic
grid generator was used to construct two types of mesh (referred to as A- and B-
grids), examples of which are shown in figure 21. The problem was discretized using
standard second-order-accurate central finite differences and the resulting nonlinear
equations solved using the Newton–Raphson method. Pseudo-arclength continuation
(e.g. Beran & Culick 1992) was used to trace the solution paths.

Second-order accuracy of the numerical solution was verified by solving the problem
of unbounded potential flow on different resolution grids (from 10×41 to 90×361 for
A-grids and 50×100 to 200×400 for B-grids) and computing the truncation error from
the analytic solution. Rotating flow past a sphere in a pipe was solved on a 30 × 121
A-grid with aspect ratio L/R = 4, and on a 30 × 361 A-grid with L/R = 11.5, both
with rs/L = 0.25. When the flow was subcritical, standing waves formed throughout
the domain. The amplitude and phase of these waves was strongly dependent on the
aspect ratio. Wavelengths estimated from the numerical solutions were within 1% of
the exact wavelength obtained from linear theory (Long 1953). In subcritical flow, the
boundary conditions used here are unable to impose the condition of no upstream
influence (for a more complete discussion, see Mattner 2000). When the swirl intensity
was decreased below critical, the effect of aspect ratio progressively weakened. For
the Q-vortex results presented in § 5.2, the flow conditions are always supercritical
and we expect L/R = 4 to be adequate. The effect of aspect ratio on the Q-vortex
results was checked at r0/R = 0.15, W2/W1 = 1.25 and Ω = 1.005 using the same
A-grids as the rotating flow. Differences in the scaled azimuthal vorticity were less
than 1%. The effect of grid resolution was studied using a 60 × 241 A-grid under the
same flow conditions (which correspond to the steepest velocity gradients examined
in this study). Differences in the scaled azimuthal vorticity were less than 3%. For the
A-grids, a discontinuity in the metrics caused the largest relative error to be located
near the poles of the sphere. For the B-grids, this discontinuity was shifted to the
junction of the wall and the inlet and outlet boundaries. Consequently, quantities such
as the axial velocity gradient ∂w/∂z at the poles could be calculated more accurately
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on B-grids than A-grids. For this reason, B-grids were used to generate all the data
presented in § 5.2, but the entire set of calculations was duplicated on A-grids. Two
solutions were compared at r0/R = 0.15, W2/W1 = 1.25 and Ω = 0 using a 30 × 121
A-grid and a 100 × 200 B-grid. Differences in the scaled azimuthal vorticity were less
than 2%. The accuracy of computing ∂w/∂z at the sphere poles was checked on a
100 × 200 B-grid by solving the unbounded potential flow problem. The error was
less than 1%. For a Q-vortex with r0/R = 0.15, W2/W1 = 1.25 and Ω = 0, increasing
the resolution of the B-grid from 100×200 to 200×400 changed ∂w/∂z at the sphere
poles by less than 1%. Using the result obtained on the B-grid as a reference, the
maximum error in estimating ∂w/∂z from a 30 × 121 A-grid for the entire parameter
range was 10%. The parameters Ω0 and Ωf (defined in § 5.2) were also computed for
both grid types and each differed by less than 5% over the entire parameter range.

5.2. Results

For this section, the swirl parameter Ω is redefined as

Ω =
2πω

2RW0

, (5.7)

where ω and W0 are taken from the Q-vortex definition given in equation (5.4). For
values of r0/R and W1/W0 typical of the experiments, 2πω ≈ Γ0 and W0 ≈ Wb hence
this redefinition is roughly comparable to the swirl parameter used in the experiments.
To illustrate the solution path in a two-dimensional diagram, it is also necessary to
introduce a relevant scalar function of the solution. For example, studies of vortex
breakdown often use the minimum axial velocity on the axis (Beran & Culick 1992;
Buntine & Saffman 1995; Wang & Rusak 1997a). This choice is not suitable in the
present case because, until upstream separation occurs, the minimum axial velocity is
always zero on the sphere poles. Upstream separation on the sphere can be detected
by monitoring the value of

−∂w

∂z

∣∣∣∣
(0,−rs )

= −1

r

∂2ψ

∂z∂r

∣∣∣∣
(0,−rs )

at the upstream pole where (r, z) = (0, −rs). This parameter is positive if the axial
flow immediately upstream of the sphere is positive (and therefore decreasing with
axial distance approaching the stagnation point at the pole) and vice versa.

The solution behaviour for two sphere sizes, rs/R = 0.25 and 0.35, over a parameter
range 0.15 � r0/R � 0.40 and 0 � W1/W0 � 1.25 was investigated. Solutions shown
here were obtained on a 100 × 200 B-grid with L/R = 4.0. Figure 22 shows solution
paths for rs/R = 0.25 only. For the range of parameters investigated, it was nearly
always possible to arrive at a swirl intensity Ω0 where the solution exhibits upstream
separation, that is, −∂w/∂z < 0. Flow reversal near the axis is associated with
negative values of ψ (see figure 24h), but the functions C(ψ) and H (ψ) are only
strictly specified for 0 � ψ � Q/2π. Additional boundary conditions are required to
specify the flow outside this range. In the present study, analytic continuation of C(ψ)
and H (ψ) into ψ < 0 was used. Although mathematically valid, the physical validity
of this procedure has been discussed at some length in the literature (Leibovich
1984; Leibovich & Kribus 1990). Ideally, the separated region would be treated as a
stagnation zone since Rusak et al. (1998a) have shown this to be consistent with the
asymptotic behaviour of the unsteady axisymmetric Euler equations. To implement
this properly, it is necessary to determine the location of the ψ = 0 stream surface
by balancing the internal and external pressure. This type of free-surface problem is
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Figure 22. Solution paths for rs/R = 0.25. The labels refer to the value of W1/W0 on each
path. The solid horizontal line indicates when upstream separation occurs. r0/R = (a) 0.15,
(b) 0.20, (c) 0.25, (d) 0.30, (e) 0.35, (f ) 0.40.
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Figure 23. Critical swirl intensities for (a) rs/R = 0.25 and (b) rs/R = 0.35. The solid lines
refer to Ω0 and the dotted lines to Ωf .

outside the scope of the present calculations. This limitation does not however affect
the study of the onset of separation or the associated physical mechanisms.

A limit point, or fold, (where Ω reaches a local maximum, Ωf ) was always
encountered at some stage of the continuation. Buntine & Saffman (1995) and Rusak,
Judd & Wang (1997) previously observed folding of solutions to the Squire–Long
equation for swirling flow through diverging pipes. Here, Ω0 was extracted from
the solution paths using linear interpolation, while Ωf was simply taken as the
maximum discrete value of Ω . The results for both sphere sizes are summarized
in figure 23. Upstream separation and folding occurred very close together, i.e.
Ω0 ≈ Ωf . Inspection of the solution paths reveals that, at low values of W1/W0,
upstream separation preceded folding while the opposite was true at larger values of
W1/W0. Increasing core size r0 delayed upstream separation (i.e. increased Ω0), as did
a stronger axial velocity jet (larger W1/W0), while increasing sphere size rs decreased
Ω0. These results may be explained in terms of the ratio α0/β0. For a Q-vortex,

α0

β0

=

(
ω

RW0

)2 1 − exp
(
−r̂2

/
r̂0

2
)

(W1/W0)
[
1 + (W1/W0) exp

(
−r̂2

/
r̂0

2
)] 1

r̂2
, (5.8)

where r̂ = r/R and r̂0 = r0/R. Note that the factor ω/RW0 is directly proportional
to Ω . If W1/W0 is increased with all other parameters held fixed, α0/β0 is reduced.
For a fixed streamline divergence σ/σ0 > 1 this will increase the azimuthal vorticity,
thereby increasing the axial velocity induced at the centreline and delaying axial
flow stagnation. Increasing r0/R with all other parameters held fixed reduces the
numerator and increases the denominator so that α0/β0 is once again reduced and the
same consequences follow. Increasing rs/R increases the peak streamline divergence
which, provided α0 > β0, decreases the azimuthal vorticity, further retarding the axial
flow induced at the centreline and causing axial flow stagnation to occur earlier.

Figures 24 and 25 show the stream function and azimuthal vorticity for several
values of Ω with rs/R = 0.25, r0/R = 0.20 and W1/W0 = 0.25. These parameters
represent a flow similar to the experiment. In this particular case, upstream separation
was first detected at Ω0 = 0.839 and preceded the fold at Ωf = 0.866. While the
stream surfaces were almost undisturbed from the zero swirl case up to Ω = 0.754,
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(a) (e)

(b) ( f )

(c) (g)

(d ) (h)

Figure 24. Stream surfaces for Ω = (a) 0, (b) 0.754, (c) 0.799, (d) 0.831, (e) 0.845, (f ) 0.856,
(g) 0.866 and (h) 0.845. Dashed lines indicate ψ < 0.

(a) (e)

(b) ( f )

(c) (g)

(d ) (h)

Figure 25. Isolines of rsη/W0 for Ω = (a) 0, (b) 0.754, (c) 0.799, (d) 0.831, (e) 0.845, (f ) 0.856,
(g) 0.866 and (h) 0.845. Isolines drawn at constant intervals in the range [−3.80, 0.80]. Dashed
lines indicate η < 0.

significant changes to the azimuthal vorticity distribution occurred. At Ω = 0 there is
a positive azimuthal vorticity component upstream of the sphere which is associated
with the axial velocity jet. Around the sphere, the azimuthal component increases. In
this case, there is no axial vorticity and the vortex lines are rings centred on the axis of
symmetry. As the flow expands around the sphere, the vortex lines are stretched and
the azimuthal vorticity must increase. This has the effect of increasing the axial velocity
component near the axis and is the reason why −∂w/∂z increases as W1/W0 (and
hence the azimuthal vorticity) is increased at zero swirl. As Ω is increased to 0.754,
the behaviour of the azimuthal vorticity is reversed. The maximum azimuthal vorticity
does not increase above the maximum value at the inlet and the azimuthal vorticity
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β (deg.) r1/rs W0/Wb (W1 + W0)/Wb r0/R W1/W0

16 0.78 1.11 1.34 0.183 0.207
19 0.80 1.05 1.36 0.188 0.295

Table 3. Flow properties at z/rs = −3.98.

decreases and becomes negative as the flow diverges around the sphere. Between
Ω = 0.754 and Ω0 = 0.856, changes to the flow pattern occur much more rapidly.
Increasing stream surface expansion, relative to the zero swirl case, upstream and
downstream of the sphere is associated with axial growth of the negative azimuthal
vorticity region and decreasing minimum azimuthal vorticity, eventually leading to
upstream (and downstream) separation.

Out of interest, the results of analytic continuation beyond Ω0 are also shown,
bearing in mind the limitations discussed above. These show recirculation regions of
slowly moving fluid on both upstream and downstream hemispheres. Note that there
are two solutions at Ω = 0.845. Figures 24(e) and 25(e) correspond to a solution
before the fold, while figures 24(h) and 25(h) correspond to a solution after the
fold. The final figure shows that the bubble grows as Ω decreases following the fold.
For larger values of r0/R, the qualitative behaviour following the fold begins to
change. As the solution is continued, the upstream and downstream symmetry of the
recirculation regions decreases, until a single bubble is located on either side of the
sphere. This is the reason for the hooks in the solution paths evident in figures 22(e)
and 22(f ) (where the upstream bubble disappears).

A precise quantitative comparison between the numerical and physical experiments
is complicated by a number of factors. First, the Q-vortex is not a completely accurate
representation of the experimental vortex. Even if it was, the centreline axial velocity
and, to a lesser extent, the core thickness depend on both Ω and z and hence
W1/W0 = f1(Ω, z/R) and r0/R = f2(Ω, z/R). These parameters were considered
fixed during continuation and the solution paths therefore do not correctly represent
the behaviour as Ω is increased in the experiment. In order to compute Ω0, it is
necessary to obtain the numerical values of W1/W0 and r0/R from experimental data
at Ω0. Even if this swirl intensity could be accurately identified from the experiments
(the numerical solutions suggest an explanation for this difficulty), the problem of
which axial station best represents the properties of the undisturbed flow remains.
Nevertheless, it can be demonstrated that the numerical solutions are not inconsistent
with the experiments. Table 3 lists some properties of the flows at β = 16◦ and 19◦

which were estimated from the first axial station in figures 6 and 7. Note that r1 is the
radius at which the peak azimuthal velocity occurs, which for the Q-vortex is related
to r0 by r1/r0 = 1.121; hence

r0

R
≈

(
r0

r1

) (
r1

rs

)( rs

R

)
=

0.263

1.121

r1

rs

.

W0 is taken to be equivalent to the uniform axial velocity outside the pipe wall
boundary layer and the vortex core. In the calculations it is assumed that the pipe
wall boundary layer can be ignored and the axial velocity W0 may be considered to
extend to the pipe wall. The centreline axial velocity estimated from the experimental
velocity profiles is assumed to be equivalent to the centreline axial velocity of the
Q-vortex, W1 + W0. The ratio W1/W0 may then be determined from
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W1

W0

=

[
W1 + W0

Wb

− W0

Wb

]
Wb

W0

and the modified swirl parameter may be estimated by multiplying the experimental
value by Wb/W0. Using average values of r0/R = 0.185 and W1/W0 = 0.25,
calculations on a 98 × 200 grid with rs/R = 0.263 and L/R = 4.0 suggest Ω0 = 0.74,
which is certainly in the correct range.

The numerical solutions suggest an explanation for the inconsistent behaviour
which complicated the experiments. For parameters typical of the experiments, the
solution fold and upstream separation occurred at similar values of Ω . Close to
upstream separation, the flow is therefore very sensitive to small changes in Ω . This
is reflected by the steep gradients of −∂w/∂z close to Ω0 in figure 22. Similarly, in
figure 24 the stream surface pattern is almost unaffected up to Ω ≈ 0.75 after which
dramatic variation, including upstream separation, occurs by increasing Ω by only
0.1. This corresponds to increasing β by only 2◦ in the experiments. It is therefore
not surprising that the flow would be susceptible to small variations. The existence
of a fold means that for some range of Ω there are at least two solutions. Folds
are usually associated with a change in solution stability; hence if the solution on
one side of the fold is stable, the other will be unstable. If it is assumed that the
qualitative behaviour of solutions using analytic continuation for ψ < 0 is reflected
by the physical flow, then this would explain why a stable separation bubble was
possible for only a very limited range of Ω . Furthermore, if the divergence of the
second unstable solution was sufficiently slow, then given certain initial conditions
it might be possible to observe the unstable solution for a limited time. This would
provide an explanation for the transient bubble at β = 16◦.

6. Conclusion
For concentrated vortex flow past a sphere in a pipe, the initial effect of swirl is

to shorten the downstream separation bubble. For a small range of Ω , it is possible
for an almost stagnant upstream separation bubble to exist. The bubble becomes
unstable at larger values of Ω and the flow subsequently becomes unsteady and
three-dimensional. At sufficiently large Ω the downstream separation is eliminated
and an unsteady, three-dimensional disturbance penetrates far upstream.

Analysis of experimental data and numerical solutions of steady inviscid
axisymmetric flow suggest that upstream separation is caused by the distortion of
vortex lines in the diverging flow approaching the sphere as originally suggested by
Brown & Lopez (1990).

For parameters typical of the experiment, a solution fold is found in the vicinity of
upstream separation. In this regime, the flow is very sensitive to changes in Ω . It is
suggested that this accounts for the extreme sensitivity encountered in the experiments.

This work was funded through the Australian Research Council and their
support is gratefully acknowledged. Some of the calculations were performed
using computational facilities at the Graduate Aeronautical Laboratories, California
Institute of Technology.
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Mitásŏvá, H., Mitás̆, L., Brown, W. M., Gerdes, D. P., Kosinovsky, I. & Baker, T. 1995
Modelling spatially and temporally distributed phenomena: new methods for GRASS GIS.
Intl J. Geograph. Informat. Syst. 9, 433–446.

Panchapakesan, N. R., Mattner, T. W., Chong, M. S. & Joubert, P. N. 1995 LDV measurements
in a swirling vortex flow around a sphere. In Twelfth Australasian Fluid Mechanics Conf. (ed.
R. W. Bilger), vol. 2, pp. 675–678. The University of Sydney.

Proudman, J. 1916 On the motion of solids in liquids possessing vorticity. Proc. R. Soc. Lond. A
92, 408–424.

Rockwell, D. 1998 Vortex-body interactions. Annu. Rev. Fluid Mech. 30, 199–229.

Rusak, Z. 1996 Axisymmetric swirling flow around a vortex breakdown point. J. Fluid Mech. 323,
79–105.

Rusak, Z., Judd, K. P. & Wang, S. 1997 The effect of small pipe divergence on near critical swirling
flows. Phys. Fluids 9, 2273–2285.

Rusak, Z., Wang, S. & Whiting, C. H. 1998a The evolution of a perturbed vortex in a pipe to
axisymmetric vortex breakdown. J. Fluid Mech. 366, 211–237.

Rusak, Z., Whiting, C. H. & Wang, S. 1998b Axisymmetric breakdown of a Q-vortex in a pipe.
Phys. Fluids 36, 1848–1853.



36 T. W. Mattner, P. N. Joubert and M. S. Chong

Snyder, D. E. & Spall, R. E. 2000 Numerical simulation of bubble-type vortex breakdown within
a tube-and-vane apparatus. Phys. Fluids 12, 603–608.

Taylor, G. I. 1917 Motion of solids in fluids when the flow is not irrotational. Proc. R. Soc. Lond.
A 93, 99–113.

Tomboulides, A. G. & Orszag, A. A. 2000 Numerical investigation of transitional and weak
turbulent flow past a sphere. J. Fluid Mech. 416, 45–73.

Wang, S. & Rusak, Z. 1997a The effect of slight viscosity on a near-critical swirling flow in a pipe.
Phys. Fluids 9, 1914–1927.

Wang, S. & Rusak, Z. 1997b The dynamics of a swirling flow in a pipe and transition to
axisymmetric vortex breakdown. J. Fluid Mech. 340, 177–223.


